
Application
Modernization
and Migration

Journey to the Cloud

oc whoami
$ oc whoami

rmarting, jromanmartin

$ oc describe user rmarting jromanmartin

Name: Jose Roman Martin Gil

Created: 42 years ago

Labels: father, husband, friend, runner, curious, red hatter,

developer (in any order)

Annotations: Principal Middleware Architect @ Red Hat

Identities:

mailto: rmarting@redhat.com

GitHub: https://github.com/rmarting

Twitter: https://twitter.com/jromanmartin

LinkedIn: https://www.linkedin.com/in/jromanmartin/

mailto:rmarting@redhat.com
https://github.com/rmarting
https://twitter.com/jromanmartin
https://www.linkedin.com/in/jromanmartin/

URBAN LEGENDS !?

DevOps !?
DON’T MIND ME

JUST SUPPORTING MY
DEVS

Devs Ops

Application Designs !?

Monoliths Microservices

What does
APPLICATION MODERNIZATION & MIGRATION

mean?

APPLICATION MODERNIZATION & MIGRATION

Focus on business workloads and solutions.

APPLICATION MODERNIZATION & MIGRATION

Digital transformation. Journey to the future.

APPLICATION MODERNIZATION & MIGRATION

Making old new again.

APPLICATION

Application Servers

Framework / APIs

App

Middleware Services

Operational Platform

App App App App App

Persistence | Security | Transaction | Messaging | HTTP

Deployment | Management | Monitoring | HA | Logging

Virtual Machine | Operating System

RUN
Brownfield

TRANSFORM
Greenfield

GROW

VIRTUALPHYSICAL PRIVATE & PUBLIC CLOUD

Complex &
heterogeneous

Lack of
common
standards

Inconsistent
automation
& governance

Typical Landscape Today

New problems to resolve

Without
adding more

complexity and
inconsistencies?

MODERNIZE
EXISTING APPS

DEVELOP NEW APPLICATIONS
THE MODERN WAY

MODERNIZATION

Why Modernize?
DISRUPTION

CUSTOMER
EMBRACE

BUSINESS
ADAPTS

DIGITAL
TRANSFORMATION

Why Modernize?
● Every business is a technology business
● Code has no business value until it is deployed
● Scale and Speed challenges
● Competitive challenges
● Gain Business Agility
● Growth enablement

MIGRATION

Why Migrate?

There is not a “off button” for your Business
Applications

Why Migrate?
● Optimizing and streamlining existing application usage
● Unlocking more value from your IT investments
● Consolidate application instances
● Rehost or replatform the application to newer infrastructure
● Develop new application code to extend the life and utility of the legacy

application
● Convert and update existing code into new development languages
● Restructure application code to support a more modular, loosely coupled

services architecture
● Retire the existing packaged application and migrate to a new application

JOURNEY TO OPENSHIFT

Where would like to be?
● One platform to support you today and tomorrow

TRANSFORM
Greenfield

GROWRUN
Modernized brownfield

COMMON HYBRID APPLICATION INFRASTRUCTURE

BETTER
SOFTWARE

ARCHITECTURE

AGILE
INTEGRATION

STREAMLINE
APPLICATION

LIFECYCLE
CONTINUOUS
INNOVATION

MODERN APPLICATION CONCEPTS

OpenShift is the new Application Server

Runtime

App

Cloud Platform

Data

Build | Deploy | Scheduling | Scaling | Elasticity | Metrics | Logging

Security IMDG Messaging

Runtime

Svc

Runtime

Svc

Cloud Provider

How do we run applications in the new world?
● Strategy and methodology
● Cloud Native, Cloud-Readiness
● Containerization is not the only step

STRATEGIES

The 6 R’s

Source: https://aws.amazon.com/cloud-migration/

https://aws.amazon.com/cloud-migration/

Decision Tree
Rehost (lift & shift)

Replatform (lift & reshape)

Repurchase

Refactor (rewrite & decouple)

Assessment
Review
Analyze
Prioritize

Tools

Retire

Retain as is (for now)

?Existing
App

Out-of-scope application for the
migration.

End-of-life application and will not be
migrated.

Replacement planned for the application.

Enhancements on top of the
minimal changes.
(e.g. tech updates, mavenization,
re-architecture)

Minimal migration (as few
changes as possible).

Not a target

Highly scaled and
high rate of change
apps are candidates

Smaller or frozen apps
are candidates here

Patterns in Modernizing Applications

REHOST
(lift & shift)

● Containerize existing
workloads

● Deploy them on a PaaS
● Keep external integrations

and data on legacy
● Legacy applications have to

be well written and suited

REPLATFORM
(augment)

● Legacy remains intact
● New layer - new capabilities
● Deploy on PaaS
● New integration points

between legacy and new
layers (Need for Agile
Integration)

REFACTOR
(rewrite & decouple)

● Legacy is totally replaced
● New interfaces and data
● Use PaaS to run
● Some data and features can

be re-wrapped, but mostly
are retired.

Patterns in Modernizing Applications

Cost of Migration

Time

REHOST
(Lift and Shift)

REFACTOR
(Rewrite and Decouple)

REPLATFORM
(Augment with new Layers)

Generally the most
expensive and longest

Modern Application Concepts

Future-proof applications

BETTER
SOFTWARE

ARCHITECTURE

Modularize

“Fast moving monolith”

Microservices

Clean technical debt

Speed up your business

STREAMLINE
APPLICATION LIFECYCLE

Accelerate time
from idea to production

Continuous Integration &
Delivery (CI/CD)

Automation & self-service

Container technology

Foster an agile culture

CONTINUOUS
INNOVATION

Agile methodology

DevOps principles

Collaboration

Bridge old and new

AGILE
INTEGRATION

Decouple, expose & integrate
APIs, services & applications

Need hybrid-cloud-enabled
integration platform

Enhancing applications, platform and processes

CLOUD-READINESS

Cloud-Readiness
● “Cloud-Native”

○ Distinctive architectural characteristics

● “Cloud-Compatible”
○ Represents the minimum viable product

● “Cloud-Ready” / “Container-Ready” / “OpenShift-Ready”

● Not every application should / can / must be made “cloud-native”
○ Container-Ready is often enough
○ Primary focus on OpenShift adoption instead on high re-architecturing efforts

The OpenShift Effect
● Principles of container-based application design

https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper

Journey from Cloud-Compatible to Cloud-Native
● Start with Cloud-Compatible changes

○ Create support from external configurations
○ Remove IP bindings
○ Run on Linux
○ Ensure logs write to console/stdout

● Progress with subsequent iterations

● Actual end state should be dictated by the
needs of the business

DEMO TIME

Demo Time - Show me the code
● Standard JEE Application

○ JPA + Hibernate to manage an external MySQL Database
○ JMS Queues to add more information to the application
○ MDB to load data from JMS Queues to store information into MySQL Database
○ Initial Servlets consuming extra startup time

● Main issues
○ Extra time to be ready after redeploy it
○ Monolithic architecture

https://github.com/rmarting/amm-demo

https://github.com/rmarting/amm-demo

Demo Time - Migration
● Main Tasks

○ Package using Thorntail (aka Wildfly Swarm)
○ Deploy using Maven Fabric8 Plug-In

https://thorntail.io/
http://wildfly-swarm.io/
https://maven.fabric8.io/

Demo Time - Thorntail
● An innovative approach to package and run Java EE applications
● Just enough App Server: package your app with required runtime

dependencies (but nothing more)
● Based in Wildfly Application Server
● Packaged as an Uber Jar (self-contained, executable Java archive)

Demo Time - Maven Fabric8 PlugIn
● Brings your Java applications on to OpenShift
● Provides tight integration into Maven
● Focus on two tasks:

○ Building Docker Images
○ Creating OpenShift resource descriptors

Demo Time - Migration Results
● Health check of our application

○ Liveness & Readiness Probe

● Zero-downtime in deployment
○ Rolling up

● Scale up/down as needed
○ Autoscaller

Demo Time - Modernization
● Main Tasks

○ Deploy Messaging Services using ActiveMQ Artemis or enmasse.io
○ Deploy Integration Services with Apache Camel and Spring Boot
○ Deploy Cron Jobs
○ Remove old operations from monolithic application

https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/
http://enmasse.io/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html/fuse_on_openshift_guide/spring-boot-image

Demo Time - Messaging Systems
● Messaging as a Service
● Messaging Protocols: AMQP, MQTT
● High Performance
● Scalable

Demo Time - Integration Systems
● Agile Integration - Cloud Native Integration

○ Integration Microservices

● Enterprise Integration Patterns
● Lightweight
● Data transformation

Demo Time - Modernization Results
● Services isolated and coordinated

○ Microservices?

● Fast monolithic application
○ Reduced the tasks done

● Resources Optimization
○ Each service uses the resources needed

Questions?

Thank you!

